公交线路查询
换乘查询(起点-终点):
 查询
 
路线查询(线路名称):
 查询
 
站点查询(站点名称):
 查询
 
  在线客服
  • 电话:  15940093009
  • 地址:  青岛慧博家教中心


       您现在的位置 > 在线资讯

每日一课:奥数知识点 —— 高斯求和

发布者:管理员 发布时间:2022-6-29 8:19:09 阅读:79

高斯求和


德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:

1+2+3+4+…+99+100=?

老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:

1+100=2+99=3+98=…=49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为

(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如:

(1)1,2,3,4,5,…,100;

(2)1,3,5,7,9,…,99;(3)8,15,22,29,36,…,71。

其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:


和=(首项+末项)×项数÷2